
Efficient N-gram Language Modeling
for Billion Word Web-Corpora

Lars Bungum and Björn Gambäck

Norwegian University of Science and Technology

Trondheim, Norway

{larsbun,gamback}@idi.ntnu.no

Abstract

Building higher-order n-gram models over 10s of GB of data poses challenges in terms of speed and memory; parallelization
and processing efficiency are necessary prerequisites to build the models in feasible time. The paper describes the methodology
developed to carry out this task on web-induced corpora within a project aiming to develop a Hybrid MT system. Using this
parallel processing methodology, a 5-gram LM with Kneser-Ney smoothing for a 3Bn word corpus can be built in half a day.
About half of that time is spent in the parallelized part of the process. For a serial execution of the script, this time usage would
have had to have been multiplied by 250 (corresponding to close to two months of work).

1. Introduction
As part of the language modeling in, for example, a statis-
tical machine translation systems, it is necessary to build
n-gram models over very large corpora. The purpose of
the language modeling is to help the machine translation
system select the correct translation candidate of many, as
the graph of possible translations is searched. It is possible
to include the language modeling while searching the graph,
as well as invoking a separate disambiguation module to
select between candidates for a particularly difficult word.

Building higher-order n-gram models over 10s of GB
of data poses challenges in terms of speed and mem-
ory; parallelization and processing efficiency are neces-
sary prerequisites to build the models in feasible time.
The paper describes the methodology developed to carry
out this task on web-induced corpora within PRESEMT
(“Pattern REcognition-based Statistically Enhanced MT”;
http://www.presemt.eu), a project developing a hybrid
statistical Machine Translation (MT) system. The establish-
ment of a framework which allows for the rapid creation of
new large language models of high order is a necessity in
such an application.

The n-gram models were built with the standard tool
IRSTLM, the IRST Language Modeling Toolkit (Federico
and Cettolo, 2007). The IRSTLM framework was adapted
to the OpenPBS queue handler in order to distribute the task
to a cluster of machines.

The alternative to adapting the parallelization scripts
from IRSTLM — or the similar SRILM (Stolcke et al.,
2011), or some other already existing, openly-available lan-
guage modeling toolkit, e.g., RandLM or KenLM described
below — would have been to implement a n-gram model-
ing tool in a parallel programming framework such as MPI
or OpenMP. This approach was discarded because it was
unlikely to result in any significant gain in performance
over the chosen PBS alternative, which produced acceptable
results.

Using the adapted scripts we were able to provide the
PRESEMT project with higher-order (5- and 7-gram) lan-
guage models, built and rebuilt according to the needs of the
project. Language models of various sorts (lemma-based,
word-based, POS-based or combinations thereof) were built,
to provide extended information to the search algorithms.

The rest of the paper is laid out as follows. The next
section discusses some previous attempts to build very large
scale language n-gram models, in particular in the context
of statistical machine translation. The corpora used as ba-
sis for creating the n-gram models in the present work are
described in Section 3. Thereafter the experimental setup
and methodology is detailed in Section 4. The core of the
paper are the experimental results and statistics on the cre-
ated models which are given in Section 5. The final section
then sums up the discussion and points to the conclusions
that can be drawn.

2. Related Work
Brants et al. (2007) investigate how large language mod-
els can be built using distributed techniques. They report
decreasing perplexity and better n-gram coverage as the
number of tokens increase, and also show how the larger
n-gram models improve BLEU (Papineni et al., 2002) scores
for a given MT task. The approach taken for the distributed
compilation of language models is the Map-Reduce frame-
work, where the counting step of the n-gram model creation
is parallelized. This process is separated into a mapping step
where words and keys are gathered, after which they are
reduced into separate processes making sure the counting of
the same keys are done on the same machines. For a 30G
size corpus, Brants et al. report a computation time of two
days for language models built with Kneser-Ney smoothing.

Several avenues have been taken to the problems of stor-
ing and processing huge n-gram language models. To this
end, Talbot and Osborne (2007) use a Bloom filter with
logarithmically quantized n-gram frequency counts, that is,

6

http://www.presemt.eu


a lossy randomized representation efficiently encoding the
n-grams together with their frequency information. This
Randomised Language Modelling (now commonly referred
to as ‘RandLM’) can give significant storage space reduc-
tions but at the cost of some extra false positives and reduced
decoding speed.

In contrast, Pauls and Klein (2011) discuss a number
of compact lossless implementations based on tabular tries
storing only the suffix of the n-gram (the last word) together
with an offset encoding the context (the remaining words).
Working on the 4B n-gram Google corpus, they encode each
n-gram in only 23 bits, in the best case reducing storage
requirements to only 1/4 and improving even on the best
previous lossy representations. Encoding the context also
gives faster processing (since there is no need to look up the
context again when moving on to the next word). Combining
this with using a direct-mapped cache, Pauls and Klein
report obtaining substantial speed-ups (up to 300%).

In a similar fashion, Heafield (2011) introduces a lan-
guage modeling library called ‘KenLM’. He compares regu-
lar hash tables to using tries and shows that a linear probing
hash table method gives significantly faster processing while
the tries produce a lot smaller data structures. Heafield also
discusses a lossy compression of the trie pointers which fur-
ther reduces the necessary storage space, but concludes that
the linear probing hash tables are preferable if processing
speed is more important than reduced memory usage. On
the other hand, RandLM is potentially the currently most
memory efficient approach, even though the memory alloca-
tion needed by the tries can be further optimized by lossless
compression, as shown by Raj and Whittaker (2003).

3. Corpora
In the development of the language modeling scripts, three
corpora of English (‘enTenTen’, with 3.5Bn Words), Ger-
man (‘deTenTen’, 3.2Bn Words), and Italian (‘itTenTen’,
2.2Bn Words) were used, all originating in the previous
“Web as Corpus” corpora known as, respectively, UKWaC,
DeWaC and ItWaC (Baroni and Kilgarriff, 2006).

The corpora were mined from the web and processed
into a “vertical” corpus format, with one word occupying
one line, displayed in various forms: the original form,
lemma, part-of-speech (POS), or the combinations thereof
(Kilgarriff et al., 2010; Kilgarriff et al., 2011).

3.1. Noise in the corpora
After the tagging, the corpora still contained noise, that had
to be addressed before building the models. Many of the
problems stem from the web-corpora being encoded in a
mixture of character sets.

For example, the most notable sources of noise in the
German corpus were:

1. Words beginning with special characters (-Bus).

2. Higher order special UTF characters (different new-
lines and so on). This created some headaches before a
proper solution could be found. With less, the char-
acters get rendered like U+0084, etc., but with cat
and more they are invisible (as they perhaps should
be). In the LM software they turn up as “token ghosts”.

3. Umlauts being rendered differently (from various char-
acter set).

4. Words that are split up that clearly are supposed to be
one word (such as “Bewaff- net”).

5. Repeated strings to three occurrences (the corpus intro-
duced many tokens of repeated words).

6. Very long words (usually 50 or 100 characters, possibly
created by hammering the keyboard) .

Scripts were written to mitigate these effects, as well as
unifying different representations of dates and numbers into
the collection tokens @date and @card.

3.2. Preprocessing
All the corpora were tokenized and part-of-speech tagged
with the TreeTagger (Schmid, 1994), and presented in a
“vertical format”, where each word used one line, and the
different forms of the word — original form, lemma, POS,
and special lemma + POS (called lempos) — were printed,
in a tab-separated form.

Using the data more or less in the same form as it was
retrieved from the web was a project research goal in its
own right. However, it proved necessary to do some pre-
processing to get workable data out of the corpora. Most
notably stripping higher-order UTF characters that would
crash the IRSTLM or give undesired output, for example,
“words” rendered as spaces which would produce spurious
n-grams. Hence, before building the language models the
corpora were transformed from the vertical format to a hor-
izontal format with one sentence per line encapsulated in
<s> </s> sentence boundary markers.

Especially the German corpus produced a very large
number of unique tokens. The highly compounding nature
of the German language resulted in many tokens ending in a
“–”, as the compounds were used in split mode (enumeration
or linebreak) in the web material. Date formats also varied
a lot, giving rise to many spuriously unique tokens.

4. Methodology
A 96 node cluster partitioned in equal parts of nodes
with 48G and 24G RAM was used to perform the exper-
iments. The cluster uses the Linux operating system, and
the OpenPBS job scheduler (http://www.mcs.anl.gov/
research/projects/openpbs). The IRSTLM software
package already had scripts for parallel treatment of data de-
veloped for another (closed) version of the PBS system, and
this was changed to adhere to the slightly different syntax
of OpenPBS.

The processing cycle goes through the following steps:

1. A dictionary is compiled for the whole input corpus.

2. The corpus is sectioned into n sections according to
word frequency.

3. N-grams are counted for each of these sections.

4. (Sub-)LM scores are computed for the sections.

5. Files are merged into one LM.

7

http://www.mcs.anl.gov/research/projects/openpbs
http://www.mcs.anl.gov/research/projects/openpbs


The sectioning of the dictionaries (or the unigram) lists
balanced with regard to frequency, would create a list of
unigrams for each section, totaling to a similar sum. To
reach this sum you would need more unigrams as the fre-
quencies go down. The top unigrams would alone constitute
a frequency well above the average frequency per section,
but a list with only one entry can not be split up. Steps 3 and
4 are the steps that are carried out in parallel on each node.
A bash script submits the jobs to the PBS queue and tells
the jobs to delay merging until all jobs have successfully
finished.

Due to resource constraints, IRSTLM uses similar scripts
to section up the building of the LMs also when running on
a serial architecture, as memory requirements of building a
large model could easily exhaust any machine. Instead of
carrying out the steps above after another, the tasks could be
submitted to a queue handler, performing them in parallel
(with the exception of the first step, dictionary collection,
and the last step, merging).

Since the same scripts were used, the parallel processing
reliably gave the same output as serial processing, and the
speed-up factor (though influenced by the load on the cluster)
was easy to assess.

The changes in adapting the Sun Grid PBS script to
the OpenPBS format mostly related to the control of work
flow. It is possible to specify that specific jobs submitted
to the queue will be halted until the successful execution
of others. To avoid submitting too many jobs at once, the
shell script waited for the dictionary compilation before
the n-gram counting and sub-LM (as described above) jobs
were submitted. The jobs were sent to the queue at the
same time, where each individual sub-LM job depended on
the corresponding job for n-gram counting, as the n-gram
counts for each section needed to be compiled before their
respective sub-LM (LM for that section) could be derived.
This was controlled by letting each sub-LM job submitted
to the queue handler depend on the successful execution of
the corresponding n-gram counting job.

The IRSTLM framework can output LMs in an internal
format, the ARPA LM format, as well as a compiled version
for quicker access with IRSTLM tools (the local platform
is Linux/amd64, but the compile step can be done on any
architecture).

5. Results
The corpora mentioned in Section 3. were sectioned into
TRAIN and TEST corpora with a Perl script randomly draw-
ing 10% of the lines into the latter for testing purposes.

The sizes of the corpora are shown in Table 1.
For each language, two corpora were extracted, a lemma

corpus, containing only the lemmata in succession and one
corpus consisting of full forms. The minor differences in
size are explained by idiosyncrasies in the extraction meth-
ods from the original format of the corpora.

For all corpora, 5- and 7-gram models were built with
Kneser-Ney smoothing. For the fullform corpora, 5-gram
models with and without pruning of singleton n-grams (i.e.,
n-grams occurring only once in the corpus) were built as
well. Due to preprocessing discarding some tokens from the
fullform corpora, that were not discarded in their lemmatized

English TRAIN TEST

Lines Words Lines Words

Lemma 108.4 3150.5 12.0 350.3

Fullform 107.4 3122.6 11.9 347.0

(a) Size of the English Corpora

German TRAIN TEST

Lines Words Lines Words

Lemma 141.8 2837.0 15.8 315.3

Fullform 141.1 2809.0 15.7 312.2

(b) Size of the German Corpora

Italian TRAIN TEST

Lines Words Lines Words

Lemma 78.5 2913.4 8.7 323.9

Fullform 77.9 2851.2 8.7 317.0

(c) Size of the Italian Corpora

Table 1: Size of training and test corpora.
Figures reported in million lines and words.

versions, the number of words reported in Table 1 are lower
for the fullform corpora.

5.1. Corpus Statistics
Evaluating language models is most interesting relative to
a specific task such as Machine Translation (MT) or spell
checking. In this work, no specific task was employed,
and the held-out test corpora were instead used to compute
perplexity and out-of-vocabulary (OOV) statistics. For the
pruned models, perplexity statistics on the TEST corpora
were collected. For the unpruned corpora this was not possi-
ble due to memory constraints.

The IRSTLM (Federico et al., 2010) language modeling
software’s standard functionality offers computation of the
above-mentioned statistics for a corpus. This was utilized
for all three languages and all corpus types.

The results on the TEST corpora for nine language mod-
els are shown in Table 2. The difference in word numbers
in the TEST between the dictionary sizes shown in Table 1
are explained by how the sentence boundary markers are
counted. In the former table, they are counted once per sen-
tence, whereas all markers are counted in the latter, making
the difference equate to the line number.

For the Lemma-based language models, the 7-gram mod-
els have the lowest perplexity, whereas the opposite is the
case for the Fullform-based models where the 5-gram mod-
els have lower perplexity (although just barely) for English
and Italian, with and without the effect of the OOV words
taken into account. An exception to this picture is the Ger-
man corpus, where the 7-gram model has markedly lower
perplexity with the 7-gram model also for the Fullform ver-
sion of the corpus.

The difference in perplexity between the Lemma and
Fullform-based models are markedly greater for the DE

8



English Nw PP PPwp Noov OOV

5-Lemma 338,4 66,466.56 1,483.36 517,501 0.15%

7-Lemma 338,4 65,720.84 1,466.72 517,501 0.15%

5-Fullform 335,1 59,605.54 1,432.67 564,070 0.17%

7-Fullform 335,1 59,812.53 1,437.65 564,070 0.17%

(a) EN TEST Corpus

German Nw PP PPwp Noov OOV

5-Lemma 299,6 29,740.41 2,088.30 13,46,978 0.45%

7-Lemma 299,6 29,264.45 2,054.88 13,46,978 0.45%

5-Fullform 296,5 62,139.56 4,606.35 1,422,892 0.48%

7-Fullform 296,5 60,932.71 4,516.89 1,422,892 0.48%

(b) DE TEST Corpus

Italian Nw PP PPwp Noov OOV

5-Lemma 315,2 81,825.78 1,682.07 433,929 0.14%

7-Lemma 315,2 79,060.37 1,625.22 433,929 0.14%

5-Fullform 308,3 96,281.84 2,208.01 482,946 0.16%

7-Fullform 308,3 99,458.00 2,280.85 482,946 0.16%

(c) IT TEST Corpus

Table 2: Statistics of the TEST corpora.

Nw is the total number of words in the evaluation corpus,
PP is the perplexity, and
PPwp reports the contribution of out-of-vocabulary (OOV) words to the perplexity.
The out-of-vocabulary word term OOV is defined as Noov/Nw ∗ 100,
with Noov being the number of OOV words.

corpus, suggesting a higher degree of noise in this corpus as
discussed in Section 3.1.

5.2. Dictionary Growth Curves
In addition to the statistics above, a dictionary growth curve
was obtained, that is, a curve showing the amount of n-
grams above the orders 0–9, with the OOV frequency in
each category when testing on the TEST corpus.

The Dictionary Growth Curves (DCGs) are shown in
Tables 3a–3f. The first three columns of each of the tables
show the percentage of words in the training corpus whose
frequencies are over 0 (all of them, 100%), those having a
frequency over 1 (40%), etc.

The reader will notice that the number of dictionary en-
tries (unigrams) should be the same as the number of uni-
grams in an unpruned language model. However, due to
the implementation Kneser-Ney smoothing, the singleton
n-grams for order 1, 2 were pruned away in the process.

Again, the markedly higher number of dictionary entries
for the DE corpora stand out.

5.3. N-grams Counts
We also extracted the numbers of each n-gram level from
the corpora, which easily done by looking at the header of

the output language model files.
The number of n-grams in the models for all three lan-

guages are shown in Table 4. For the English and Italian
corpora, the 4-grams were the most frequent n-gram order
in the language models, whereas the highest amount of non-
singleton n-grams was found in the bigram category for the
German corpus.

In addition, unpruned models were built for the Fullform
corpora. Comparing those to the singleton-pruned language
models shows that the amount of n-grams quickly gets enor-
mous. When zipped down, the unpruned models required
about 31G of storage (in the intermediate iArpa format), and
were thus not very workable for standard machinery. Using
the quantization functionality of the IRSTL toolkit might be
a solution to this.

5.4. Computation Times
Because of the differences in load on the cluster over time,
it is difficult to report accurate computation times. However,
as an indication, the whole process of building any one of
these language models would take 8–12 hours depending
on the cluster load. If the load was low, it was possible
to build three such models simultaneously within the same
time frame.

9



Freq Entries Percent Freq OOV

>0 7,507,448 100.00% <1 0.15%

>1 3,072,234 40.92% <2 0.22%

>2 2,074,727 27.64% <3 0.26%

>3 1,628,826 21.70% <4 0.29%

>4 1,362,639 18.15% <5 0.32%

>5 1,185,035 15.78% <6 0.35%

>6 1,054,988 14.05% <7 0.37%

>7 956,259 12.74% <8 0.39%

>8 877,378 11.69% <9 0.41%

>9 813,647 10.84% <10 0.43%

(a) DCG for English Lemma Corpus

Freq Entries Percent Freq OOV

>0 8,203,706 100.00% <1 0.17%

>1 3,335,431 40.66% <2 0.24%

>2 2,280,889 27.80% <3 0.28%

>3 1,801,269 21.96% <4 0.32%

>4 1,516,574 18.49% <5 0.35%

>5 1,325,480 16.16% <6 0.38%

>6 1,185,591 14.45% <7 0.40%

>7 1,079,341 13.16% <8 0.43%

>8 994,459 12.12% <9 0.45%

>9 925,466 11.28% <10 0.47%

(b) DCG for English Fullform Corpus

Freq Entries Percent Freq OOV

>0 19,300,334 100.00% <1 0.45%

>1 7,404,928 38.37% <2 0.64%

>2 4,841,598 25.09% <3 0.76%

>3 3,706,439 19.20% <4 0.86%

>4 3,042,511 15.76% <5 0.94%

>5 2,606,399 13.50% <6 1.01%

>6 2,293,273 11.88% <7 1.07%

>7 2,056,786 10.66% <8 1.13%

>8 1,870,568 9.69% <9 1.18%

>9 1,719,753 8.91% <10 1.22%

(c) DCG for German Lemma Corpus

Freq Entries Percent Freq OOV

>0 20,775,474 100.00% <1 0.48%

>1 8,163,441 39.29% <2 0.68%

>2 5,463,441 26.30% <3 0.81%

>3 4,253,230 20.47% <4 0.92%

>4 3,543,995 17.06% <5 1.01%

>5 3,071,589 14.78% <6 1.09%

>6 2,731,179 13.15% <7 1.15%

>7 2,470,988 11.89% <8 1.21%

>8 2,263,809 10.90% <9 1.27%

>9 2,096,181 10.09% <10 1.32%

(d) DCG for German Fullform Corpus

Freq Entries Percent Freq OOV

>0 6,475,359 100.00% <1 0.14%

>1 2,778,546 42.91% <2 0.20%

>2 1,903,603 29.40% <3 0.24%

>3 1,511,911 23.35% <4 0.27%

>4 1,275,415 19.70% <5 0.30%

>5 1,116,931 17.25% <6 0.32%

>6 1,000,423 15.45% <7 0.34%

>7 911,485 14.08% <8 0.36%

>8 840,714 12.98% <9 0.38%

>9 782,787 12.09% <10 0.40%

(e) DCG for Italian Lemma Corpus

Freq Entries Percent Freq OOV

>0 7,365,655 100.00% <1 0.16%

>1 3,169,535 43.03% <2 0.22%

>2 2,222,344 30.17% <3 0.27%

>3 1,786,668 24.26% <4 0.31%

>4 1,525,238 20.71% <5 0.34%

>5 1,348,829 18.31% <6 0.37%

>6 1,219,203 16.55% <7 0.39%

>7 1,119,484 15.20% <8 0.41%

>8 1,040,111 14.12% <9 0.44%

>9 974,612 13.23% <10 0.46%

(f) DCG for Italian Fullform Corpus

Table 3: DCG curves for the six corpus types

On average, the parallelized jobs would take about 1.5
hours, with the exception of the jobs counting n-grams based
on the most frequent unigrams, that could take up to 5 hours
to finish. The merging of the sub-language models would
have to wait for all the sub-models to finish, and hence it was
necessary to wait for these initial jobs to exit. Theoretically

it would be possible to find an ideal number of jobs to
minimize the total computation time, where the smaller jobs
would be made big enough to correspond to the jobs based
counting n-grams for the most frequent unigrams. This
would lead to a smaller total computation time, being easier
on the cluster, but would not change the total time the script

10



English Fullform

Order 5 pruned 5 unpruned 7 pruned

1-gr 3.3 3.3 3.3

2-gr 135.3 135.3 135.2

3-gr 165.6 668.8 165.6

4-gr 222 1,451.9 222.0
5-gr 179.4 2,026.2 179.4

6-gr 115,4

7-gr 72,1

In total 705.7 4,285.5 893.3

(a) EN Corpus n-gram counts

German Fullform

Order 5 pruned 5 unpruned 7 pruned

1-gr 8.1 8.1 8.1

2-gr 237.0 237.0 237.9
3-gr 168.5 842.9 168.5

4-gr 180.5 1,493.3 180.5

5-gr 128.1 1,844.2 128.1

6-gr 79.6

7-gr 52.6

In total 722.4 4,425.5 854.7

(b) DE Corpus n-gram counts

Italian Fullform

Order 5 pruned 5 unpruned 7 pruned

1-gr 3.1 3.1 3.1

2-gr 131.2 131.2 131.2

3-gr 169.7 670.3 169.7

4-gr 225.1 1,454.8 225.1
5-gr 174.8 1,991.3 174.8

6-gr 114.2

7-gr 79.2

In total 704.1 4,250.9 897.6

(c) IT Corpus n-gram counts

Table 4: N-gram counts for pruned and unpruned 5,7-gram models from the Fullform EN/DE/IT corpora.
Figures reported in million n-grams.

needs to return with a language model.

6. Conclusions
Experimenting with building and rebuilding n-gram models
built from large corpora requires efficient computation. In
this paper we have shown how they can be efficiently built
using the IRSTLM framework, adapted to the OpenPBS job
scheduler. Although the machinery used can be considered
high-end, such equipment is available for many universities
and research organizations today.

With web corpora. noise can be a problem, and we have
identified steps that can be taken to reduce the number of
unique tokens that are not members of the language, but
rather have been produced as the result of idiosyncrasies in
the corpus processing.

Comparing models of different orders and built on lem-
mas, nouns, verbs, etc., in a final application (in this case
Machine Translation) is also of value. When dealing with
large corpora, it is possible to extract valuable linguistic

11



information about the languages, as the perplexity of corpus
samples of a language wanders asymptotically towards the
perplexity of the language itself.

It is interesting to note the low degree of out-of-
vocabulary words, also when using corpora that retain cap-
italization and inflected forms (as in the Fullform corpora
above), an indication of the benefit of large data.

Acknowledgments
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007–2013) under grant agreement nr 248307
(PRESEMT). Thanks to André Lynum, Erwin Marsi and the
anonymous reviewers for useful comments on earlier drafts
of the article.

7. References
Marco Baroni and Adam Kilgarriff. 2006. Large

linguistically-processed web corpora for multiple lan-
guages. In Proceedings of the Eleventh Conference of
the European Chapter of the Association for Computa-
tional Linguistics: Posters & Demonstrations, pages 87–
90, Trento, Italy. ACL.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in ma-
chine translation. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 858–867, Prague, Czech Repub-
lic, June. ACL.

Marcello Federico and Mauro Cettolo. 2007. Efficient han-
dling of n-gram language models for statistical machine
translation. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 88–95, Prague,
Czech Republic, June. ACL.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo,
2010. IRST Language Modeling Toolkit, Version 5.50.02:
User Manual. FBK-irst, Trento, Italy, November.

Kenneth Heafield. 2011. KenLM: Faster and smaller lan-
guage model queries. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation, pages 187–197,
Edinburgh, Scotland, July. ACL.

Adam Kilgarriff, Siva Reddy, Jan Pomikálek, and Avinesh
PVS. 2010. A corpus factory for many languages. In
Nicoletta Calzolari, Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner,
and Daniel Tapias, editors, Proceedings of the Seventh
International Conference on Language Resources and
Evaluation (LREC’10), pages 904–910, Valletta, Malta,
may. European Language Resources Association (ELRA).

Adam Kilgarriff, Avinesh PVS, and Jan Pomikálek. 2011.
Comparable corpora BootCaT. In Iztok Kosem and Kar-
men Kosem, editors, Proceedings of eLex 2011, Elec-
tronic Lexicography in the 21st Century: New Appli-
cations for New Users, pages 122–128, Bled Slovenia,
November. Trojina, Institute for Applied Slovene Studies.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics,
pages 311–318, Morristown, NJ, USA. ACL.

Adam Pauls and Dan Klein. 2011. Faster and smaller n-
gram language models. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 258–267, Portland,
Oregon, USA, June. ACL.

Bhiksha Raj and Ed Whittaker. 2003. Lossless compression
of language model structure and word identifiers. In Pro-
ceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, page 388–391. IEEE.

Helmut Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of International
Conference on New Methods in Language Processing,
volume 12, pages 44–49, Manchester, UK.

Andreas Stolcke, Jing Zheng, Wen Wang, and Vic-
tor Abrash. 2011. SRILM at Sixteen: Update
and outlook. http://www-speech.sri.com/pubs/

papers/Stol1112:SRILM/document.pdf.
David Talbot and Miles Osborne. 2007. Randomised lan-

guage modelling for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 512–519,
Prague, Czech Republic, June. ACL.

12

http://www-speech.sri.com/pubs/papers/Stol1112:SRILM/document.pdf
http://www-speech.sri.com/pubs/papers/Stol1112:SRILM/document.pdf



